Optimising nutrient management for improved productivity and fruit quality in mangoes

Jo Tibrook & Tony Asis (NTDPIR), Raj Pandeya, Sarah Carrick and Dave Rowlings (QUT)
Dallas Anson, Alan Niscioli, Danilo Guinto, Heshan Jayasekara (NTDPIR)

Supported by funding from the Australian Government Department of Agriculture, Water and the Environment as part of its Rural R&D for Profit Program and Horticulture Innovation Australia, Queensland University of Technology and NT Department of Primary Industries and Resources
Significant, expanding industry in NT
- 40,000 tons/year
- ~50% of total AU mango crop
- $112 million annual production

Climate and soil differences compared with QLD
- Not all management practices are transferrable

Extreme variations in NT orchard management
MPfN-mangoes

Questions?

✍ What is the local N budget for mangoes?
 • N taken up?
 • N recycled?
 • N lost to environment?

✍ How much N is too much?
 • Impacts on fruit?

✍ Are there regional differences on commercial farms?
 • Katherine region
 • Darwin region
MPfN - mangoes

How much N is too much?

- Soil applied: 0, 12.5, 25, 50 kg N/ha
 0, 50, 100, 200 g N/tree

Nitrogen in disguise
- Bio-amendments
- KNO₃ at flowering
 = ~6 kg /ha/year or 24 g/tree

No yield difference related to N
~100% yield difference between years
- Typical of biennial bearing Kensington Pride
2018-no N impact on
- Fruit % dry matter at harvest
 - Juice ° Brix
 - Flesh texture
 - Flesh colour
 - Fruit N content
 - More N ↑ trend in ‘soft nose’

2018-N skin response
- Stay green skin when ripe at 50 kg N/ha or 200 g N/tree
MPfn - mangoes-post harvest

2019
- Repeated post harvest measurements
- Ripened +/- ethylene @ 15 ppm for 3 days

Findings
- No ‘stay green’ skin during ripening
 - Probably due to double yield in 2019
- Fruit N content
 - Data pending
- Control fruit
 - Ripe/softened in 14 days at 22 °C +/- 2
- Ethylene treated fruit
 - Ripe/softened in 9 days
 - Developed ~ 2° less Brix
 - Flesh colour was lighter, less red, and less yellow

Conclusion
- Ethylene treatment reduces fruit quality-colour and sweetness
Is nitrogen taken up into leaves when trees sprayed with KNO₃ at flowering & fruit set?

- Leaves dipped into 2% KNO₃ solution (¹⁵N labelled)
- 2 x over 24 hours
- Sampled @ 48 h after dipping
- Pot based work

- 25-40 % of solution N taken into leaf
- K uptake-data pending

<table>
<thead>
<tr>
<th>Mango variety</th>
<th>Leaf NUE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KP</td>
<td>bc</td>
</tr>
<tr>
<td>1201</td>
<td>c</td>
</tr>
<tr>
<td>1243</td>
<td>bc</td>
</tr>
<tr>
<td>4069</td>
<td>a</td>
</tr>
<tr>
<td>B74</td>
<td>ab</td>
</tr>
</tbody>
</table>

MPfN - uptake
MPfN - N cycling

- Litter collected in traps over a year
 - Commercial orchards
 - Katherine & Darwin regions
 - KP & B74
- Prunings collected

Litter (kg DW ha\(^{-1}\))

- Leaves
- Flowers
- Panicles
- Fruit
- Branches
MPfN - N cycling

Litter (kg DW ha\(^{-1}\))
- Leaves
- Flowers
- Panicles
- Fruit
- Branches

Litter & prunings (tons DW ha\(^{-1}\))
- Leaves
- Panicles
- Flowers
- Fruit
- Branches
- Total

Nitrogen (kg ha\(^{-1}\))
- Litter
- Prunings

4.2 tons/ha
22.2 kg N/ha

MPfN: MPfN - N cycling

NORTHERN TERRITORY GOVERNMENT

28-Jun 9-Aug 20-Sep 1-Nov 13-Dec 24-Jan 18-Apr 30-May 11-Jul
MPfN - N cycling

2019 fruit N content? Data pending ~30 kg/ha?

NUE in yield terms? Data pending

Note that 25-40% of total yield usually stays on the trees.
Tindal 2018-2019

Tindal RAAF (014932) 2018 Rainfall (millimetres)

- **2018**: 836 mm

Tindal RAAF (014932) 2019 Rainfall (millimetres)

- **2019**: 602 mm

Tindal RAAF (014932) 2018 maximum temperature

- **Mean max**: 34.9°C

Tindal RAAF (014932) 2019 maximum temperature

- **Mean max**: 35.6°C
Young trees take up 25% of soil applied 15N labelled fertiliser.

- Mature trees - data pending

60% of annual N_2O emissions occur within 2 weeks of applying N to soil (Raj Pandeya).

- ~200 g N/year lost as N_2O
- Leachates-soil core work - data pending

~25-40% uptake of leaf applied KNO_3 in laboratory conditions - varietal variation

Harvested fruit takes ~15-30 kg N/ha out of the cycle

~22 kg N/ha cycled in litter and prunings.
Completing quantification of mango tree N demand and cycling in the soil-plant continuum

Better understanding of post-harvest impacts of N application on mango fruit and ethylene assisted ripening

Writing evidence based nitrogen ‘best practice’ recommendations for the Northern Territory mango industry
 • Will offer cost benefits to commercial growers
 • Reduced losses of N into the environment

Load data into APSIM Next Generation to start modelling
 • Agricultural production system modelling and simulation
 • Established by UQ, CSIRO, AgResearch Ltd., NZ & Qld Government
 • Broad acre crop modelling
 • Expanding into forestry and tree crops
Thank you to our commercial research partners:

Nutrano Produce Group, Acacia Hills Mango Farm, Tou’s Garden, Jabiru Tropical Orchards, NTLD, Manbulloo Mangoes, Happy Mangoes, Pinata Mangoes.

Contact: Constancio.Asis@nt.gov.au